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Using approximate equations of motion, an investigation has been
inade of the development of steady laminar radial flow of a viscous
incompressible liquid in the gap between parallel disks. In the region
of hydrodynamically stable flow the heat transfer problem is solved
for a given constant heat flux at the wall,

We shall examine two plane disks, located parallel
to one another at distance h. In the center of each disk
there is a hole of radius ry, through which a liquid
is admitted info the gap between the disks, where it
flows in a radial direction. Considering the flow be-
tween the disks to be axisymmetric, it may be de-
scribed by the system of equations:

S
o[ )
v, (3;/: +V ‘3‘;2 =__;-g_g+
+v[+%(r a(;/rz >+

62Vz]7 W Ve, Wi _,

072 or r oZ

To investigate the development of longitudinal
velocity, we shall use, instead of this exact sjrstem,
a system of approximate equations obtained by Targ's
method [1]. We simplify the initial system on the
usual assumptions of boundary layer theory, and then
neglect the term Vz(8Vy)/(9Z) on the left of the first
equation, while in the term Vy¢(8Vy)/(8r) we replace
Vy by the average value ryVyy/r over the section
{we consider that Vyj is constant over the section).
This gives
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It follows from (2) that p = f(r). To determine
f(r) we integrate (1) with respect to Z from —h/2 to
h/2 and insert the expression for the mass flow rate
Q. Then
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Eliminating 1 %’L from (1), using (4), we ob-
: r

tain for the determination of vy an equation which in
dimensionless terms has the form
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Here
R=rjry; z=2Z/k; v, =V /Vu; k=2vr/V,h
The boundary conditions of the problem are
U =0 % =0, v, = 1.
=1 02 a0 R=1

Introducing the new independent variable ¢ = R% — 1,
we obtain
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Applying a Laplace-Carson transformation to (6) and
conditions (7), we have
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Integrating (8) with boundary conditions (9) and deter-
do,
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mining( ) , We obtain
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or, returning to the original,
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where v, are roots of the equation tgyy, = vpy.

Let us examine the behavior of v, as R increases.
If we employ an asymptotic evaluation for the integrals
on the right side of (10) {2], it may be shown that as
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R increases the sum appearing in (10) diminishes as
1/R3. Thus, the longitudinal velocity profile as R
increases approximates to the limiting profile

=3yl

o=l z)R. (11)
It may be seen from this expression that the depend-~
ence of the limiting profile on z is the same as in the
case of a plane gap.

The presence of a limiting profile in the flow of
liquid in the gap between the disks allows us to intro-
duce the concept (analogous to flow in a plane gap or
tube) of flow stabilized along the length and an en-
trance section. We understand stabilized flow to be
flow with a longitudinal velocity profile close to the
limit, and differing from it by no more than 1% [1].
Starting from this condition, the length of the entrance
section, r;, was determined. It may be seen from
Fig. 2 that as ry increases (for given Re), the length
of the entrance section increases and tends to the
value for a plane gap, while as ry decreases it also
decreases (it should be noted that a similar picture
occurs in plane diffusers [1]). For k > 20 the length
of the entrance section will be the same as for a
plane gap. The dependence of L on Re is shown in
Fig. 3 for several values of the parameter ® = ry/h.
It follows from the curves presented that L increases
with increase of Re, while with increase of n 8L/8Re
increases.

Since the equation of motion (1) does not contain
transverse velocity, the results obtained give a suf-
ficiently accurate description only of the development
of longitudinal velocity Vy. Some idea of the behavior
of transverse velocity V, may be obtained by sub-
stituting the expression for Vr into the continuity
equation (3) and determining V, from it. It is easy to
show that the transverse velocity profile obtained in
this way will satisfy the no-slip condition at the walls

Vz ’z=+h/2= 0). Knowing the longitudinal velocity pro-
file, it is easy to determine the friction coefficient:
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Using the expression for vy, we obtain
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The problem of heat transfer in the gap between
parallel disks is solved for the case when a constant
heat flux is given at the surface of the disks in the
stabilized flow region (the walls of the disks are con~
sidered to be thermally insulated in the hydrodynamic
entrance section), The liquid temperature at the inlet
‘to the gap is assumed constant. The problem is solved
on the assumption that the physical properties of the
liquid are constant; we neglect heat flow due to heat
conduction in the radial direction,
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Under the assumptions indicated, the equation of
heat flow, written in dimensionless variables, has
the form
3 1 or » O°T
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where
T = (t—t;3) 2Mgh;  Pe == 2hv,p/a; w= rolh.
The boundary conditions are
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Let us find the temperature profile in the stabilized
heat transfer section Ty. If the temperature profile is
fully stabilized, then
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where T, is the mean mass temperature of the liquid.
From the heat balance equation, bearing in mind that
Ty is zero at the inlet to the heated section, we ob-
tain
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‘The quantity AT = Ty — Ty, satisfies the equation
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Solving this equation, and taking account of the bound-
ary conditions (14), we obtain
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From the determination of AT it follows that
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Substituting AT into this condition, we obtain C =
= -39/280. Thus,
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We seek a solution of (13) in the form
T=w+T,, (16)

where w satisfies the equation
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Fig. 1. Location of the coordinate axes in the
gap between the disks.
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Fig, 2, Dependence of the ratio L/Re at the!inlet to the gap on the
parameter k(L = r;/2h),
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Fig. 3. Dependence of the dimensionless entrance section
length L at the inlet to the gap on Re number: 1) x = 150;
2) 300; 3) plane gap.
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Going over to the new variable £ = R? — Ri in (17),
we obtain
B Pe O Ow (19)
8 ® a0t 0z*
We put w in the form
w =3 (E) L (2). (20)
Z{z) satisfies the equation
27 a2l — = (21)
and the boundary conditions
dz Z
SZ =0 ff—f% = 0. (22)
dZ 2e=0 dz lz=1

In order to determine the eigenfunctions Zp(Z), we
use the method described in [2].
We seek a solution of (21) in series form

_ \ P
= }_anx,,, (23)

n={

where x;, are eigenfunctions of the auxiliary equation
4 atr=0, (24)

which satisfy the same boundary conditions, i.e.

3

L I S ) (25)
dz |;=0 dz |
where x,, = cOS anz; ay are roots of the equation
sinegp,=0n=1,2,...; ap =50 = ,2,....
If n = 0, and therefore x; = 1, then (23) may be
conveniently written in the form

\j a? x, 4 al’. (26)
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Azn eigenfunction zp corresponds to each eigenvalue
Apye

Let us first examine the case A%) = 0, In this case
the solution of (21), satisfying boundary conditions
(22), takes the form zy = const. Since the eigenfunc-
tions are determined to within a constant multiplier,
we may consider, without loss of generality, that
zg = 1. We shall now find Zp. We multiply (21) by
xp and integrate with respect to z from 0 to 1, and
find that two cases are possible:
first

Al 3 :
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second

n=1,2, ..., x,=:cosnnz,
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Thus, to determine the eigenvalues AL we have a
system of n equations, of which the first is (27), and
the remainder have the form of (28). The number of
such systems is p, which corresponds to the number
of eigenvalues which we are seeking.

Substituting (27) into (28), we obtain the system
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In (31) the sum is of order 1/n%, while f(Ap, n) ~
~ n?, and therefore in the first approximation we
neglect the term with the sum and obtain
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In the first approximation 7\%) is found as a root of
the equation f (Ap, p) =0, i.e.,

Wy =R 2 l e *-;—»—;~]; p=1 2, ... (33)

To improve on the eigenvalues 7\% from (33), we
substitute into (32) and find (a!”),, which we insert
in turn under the summation sign in (31) to find a
more accurate value (a{”’),,. We further substitute
(a\?), under the summation sign in (30) to find new,
more accurate values of 7\{3 The process continues
until the requisite accuracy is obtained.

After the eigenvalues >\§) are found, the eigen-
functions Zp are found in series form (26).
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Let us find the functions Ep(g), which satisfy the
equation

a8, 2 8 =

dt 3 Pe
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to within a constant multiplier.
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Fig. 4. Dependence of Nu = (4)/(Tg ~ Typ)
on x = (r — ry)/(2h)(Pe)-1: 1) plane gap;
2) Pe =500, x = 300; 3) Pe =500, x = 150;
4) Pe = 1000, x = 150.

Thus,
w=iapz,= \ C,,exp(——i—"«hz,ﬁ X
prart - 3 Pe

X [Z aj cos :mz+ao]+co, (34)

n=1
where C,, are constants which are found from the
condition at the inlet to the heated section:
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The final expression for the liquid temperature
has the form

T=4-2|R S -
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Let us determine the law of variation of local
Nu number with radius

1
Tin = \Tde/\de

U

Nu=4(T|,_ —Ty)h
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Using the expression for T, we obtain

Nu=4}17/35 1N C, exp (——8~ X
| 3 Pe

\ AR — R} ) X

pe=t

—1

(V alp) au)

As R increases, Nu — 8.235. Thus, the stabilized
value of Nu number for the flow of an incompressible
liquid in the gap between the disks, under constant
heat flux, coincides with the stabilized value of Nu
for a plane gap with q = const.

The values found for the first eigenvalues were:

)\f = 15,18289 (fourth approximation) and k% =
= 65,35358 (seventh approximation).

The corresponding coefficients a( and Cp are
a"’ = —0.293733; a{ = 0.214582; a“’ = +1; of? = —
~0.496348; ai" = 0.12981088; a’ = 1; af’ = —0.0092-
56616; af® = 0.35723 a{" = 0.0028332; a{” = —0.0078-
2605; a@ = 0.005513; C; = 0.20795; C, = —0.0323171.

Figure 4 shows the variation of Nu along the radius
of the gap for various values of Pe and ®. It may be
seen from the curves presented that with increase of
w the heat transfer in the gap between the disks ap-
proximates to that in a plane gap.

It follows from the results obtained that the hydro-
dynamics and heat transfer of the flow in the gap be~
tween the disks has much in common with the plane
gap case, As ry increases, the results obtained go
over to the analogous results for a plane gap. This is
easily confirmed by making the limiting transition
whenry — o, r — o, /7y =1 at a fixed value of r —

- Ty.

NOTATION

r, Z—cooordinates in radial and axial directions;
ro—radius of central hole; ry—boundary of hydro-
dynamic entrance section; h—gap width; Vy, Vz—
velocity of liquid in radial and axial directions; Vpy
velocity of liquid at inlet to gap; p—pressure; t—tem-
perature; tin—liquid temperature at gap inlet; q—heat
flux; p—density; v—kinematic viscosity; a—thermal
diffusivity; S—Laplace~Carson transform parameter;
L—dimensionless length of entrance section, L =
=r,/2h.
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